Stereoselective Decomposition of Pyrazolines Containing Trifluoromethyl Groups

Masakazu Nishida, Yoshio Hayakawa, Masaki Matsui,†
Katsuyoshi Shibata,† and Hiroshige Muramatsu*,†
Government Industrial Research Institute, Nagoya,
Hirate-cho, Kita-ku, Nagoya 462
†Department of Chemistry, Faculty of Engineering, Gifu University,
Yanagido 1-1, Gifu 501-11
(Received December 20, 1991)

Synopsis. The reaction of (*Z*)- and (*E*)-6,6,6-trifluoro-4-trifluoromethyl-4-hexen-3-ones (1) with diazomethane afforded the corresponding cis- and trans-pyrazolines (2), respectively. Photochemical and thermal decompositions of the r-3, t-4-bis(trifluoromethyl)pyrazoline gave selectively r-1, t-2-bis(trifluoromethyl)-1-propionylcyclopropane (3) and 3,4-bis(trifluoromethyl)-2-ethyl-4,5-dihydrofuran (4). On the other hand, those transformations of the r-3,c-4-isomer of the pyrazoline gave a mixture of the r-1, c-2-isomer of 3, 4, and 4,5-bis(trifluoromethyl)-5-hexen-3-one (5).

© 1992 The Chemical Society of Japan

Since cyclopropanes are one of the most important intermediates for the synthesis of medicines, due to their highly strained structure, the introduction of a trifluoromethyl group into such molecules is of interest. Several methods, such as reactions of olefins with carbenes, ¹⁻³⁾ and organomercury compounds, ⁴⁾ as well as the decomposition of pyrazolines^{5,6)} have been reported for the synthesis of (trifluoromethyl)cyclopropanes. We wish to report here on the synthesis of pyrazolines obtained from *cis*- and *trans*-6,6,6-trifluoro-4-trifluoromethyl-4-hexen-3-ones (*cis*-1 and *trans*-1), ⁷⁾ as well as their decomposition reactions to give cyclopropanes containing two trifluoromethyl groups.

$$\begin{array}{c} \text{CF}_3\text{C} \equiv \text{CCF}_3 \\ + \\ \text{C}_2\text{H}_5\text{CHO} \end{array} \end{array} \xrightarrow{\text{Pray}} \begin{array}{c} \text{C}_2\text{H}_5\text{CO} \\ \text{CF}_3 \end{array} \xrightarrow{\text{hv}} \begin{array}{c} \text{C}_2\text{H}_5\text{CO} \\ \text{CF}_3 \end{array} \xrightarrow{\text{Co}} \begin{array}{c} \text{H} \\ \text{CF}_3 \end{array} \xrightarrow{\text{Co}} \begin{array}{c} \text{CF}_3 \\ \text{CO} \end{array} \xrightarrow{\text{Co}} \begin{array}{c} \text{CO} \\ \text{CF}_3 \end{array} \xrightarrow{\text{Co}} \begin{array}{c} \text{CO} \\ \text{CF}_3 \end{array} \xrightarrow{\text{Co}} \begin{array}{c} \text{CO} \\ \text{CF}_3 \end{array} \xrightarrow{\text{Co}} \begin{array}{c} \text{CO} \\ \text{CO} \end{array} \xrightarrow{\text{CO}} \xrightarrow{\text{CO}}$$

The reaction of 1 with diazomethane at ambient temperature induced a 1,3-dipolar addition reaction to give 3,4-bis(trifluoromethyl)-3-propionylpyrazoline (2) quantitatively (Scheme 1). The stereoselectivity of this reaction concerning two trifluoromethyl groups was determined on the basis of the 19 F NMR spectra (the coupling constant of the F atom between trifluoromethyl groups at the 3- and 4-positions: cis, J=11.7 Hz; trans, J=1.3 Hz).

Though both cis- and trans-pyrazolines 2 were stable in the dark at room temperature, they easily decomposed at higher temperature or under UV irradiation. The

$$C_{2}H_{5} \xrightarrow{S} C_{2}H_{5} \xrightarrow{S} C_{2}H_{5} \xrightarrow{C} C_{2}H_{5} \xrightarrow$$

Scheme 2.

Table 1. Decomposition of 3,4-Bis(trifluoromethyl)-3-propionylpyrazolines (2)

Pyrazoline	Method	Total time min	Yield/%			
			trans-3	cis-3	4	5
trans-2	Pyrolysis	90	47	0.9	52	0
trans-2	Photolysis	100	80	2.2	18	0
cis-2	Pyrolysis	90	4.4	54	11	31
cis-2	Photolysis	100	0.3	94	1.3	4.3

results of the decompositions of 2 are summarized in Table 1. Both photochemical and thermal decompositions of *trans-2* gave stereoselectively *r-1,t-2*-bis(trifluoromethyl)-1-propionylcyclopropane (*trans-3*) and 3,4-bis(trifluoromethyl)-2-ethyl-4,5-dihydrofuran (4). Those of *cis-2* afforded mainly a mixture of *cis-3*, 4, and 4,5-bis(trifluoromethyl)-1-hexen-3-one (5).

Concerning the mechanism of decomposition of 1-pyrazolines, three processes (such as a 1,3-diradical, a zwitterionic intermediate, and an electrocyclic process) were proposed; the decomposition of pyrazoline bearing α -electron withdrawing groups is not yet completely understood.⁸⁾

Although a plausible reaction mechanism for the stereoselective formation of 3,4, and 5 is shown in Scheme 2, a diradical or zwitterionic mechanism can not be excluded, since the formation of 4 can also be explained by the ionic intermediate process. Regarding the formation of 5 from the *cis-2* isomer, an intramolecular hydrogen bond between the hydrogen on the C-4 carbon and the carbonyl oxygen seems to assist to give an enol form of 5, which then tautomerizes to the keto form of 5, as shown in Scheme 2.

Experimental

Instruments. IR spectra were recorded on a Hitachi 285H grating infrared spectrophotometer. $^{1}\text{H NMR}$ (90 MHz) spectra were measured with a Hitachi R22 spectrometer with tetramethylsilane used as an internal reference. $^{19}\text{F NMR}$ (56.45 MHz) spectra were measured with a Hitachi R20B spectrometer; positive δ values appear downfield from the external reference, trifluoroacetic acid. All NMR spectra were measured in carbon tetrachloride by an external lock. Mass spectra were measured with a Hitachi RMU-7 spectrometer.

Synthesis of 6,6,6-Trifluoro-4-trifluoromethyl-4-hexen-3-one (1). (*E*)-6,6,6-Trifluoro-4-trifluoromethyl-4-hexen-3-one (*trans*-1) was prepared by the γ -ray induced addition reaction of hexafluoro-2-butyne with propionaldehyde. UV irradiation of the *trans*-1 gave (*Z*)-6,6,6-trifloro-4-trifluoromethyl-4-hexen-3-one (*cis*-1).⁷⁾

Synthesis of 3,4-Bis(trifluoromethyl)-3-propionyl-4,5-dihydro-3*H*-pyrazole (2). To an ether solution (30 mL) of *trans*-1 (2.50 g, 11.4 mmol), was added an ether solution of diazomethane cooled with ice, which was allowed to stand at ambient temperature for 30 min. After evaporating the solvent, pure r-3,t-4-bis(trifluoromethyl)-3-propionylpyrazoline (*trans*-2) was obtained in 98% yield (2.91 g).

trans-2: n_0^{20} 1.3860; IR (neat) 1741 (C=O), 1572 (N=N); 1 H NMR δ=1.01 (t, J=7.2 Hz, CH₃), 2.56 (q, J=7.2 Hz, CH₂), 3.0—3.6 (m, CHCF₃), 4.90 (br s, CH₂N=N), 4.98 (br s, CH₂N=N); 19 F NMR δ=7.2 (q, J=1.3 Hz), 14.5 (dq, J=9.0 and 1.3 Hz).

r-3,c-4-Bis(trifluoromethyl)-3-propionylpyrazoline (cis-2) was obtained quantitatively using a similar procedure.

cis-2: n_{30}^{20} 1.3879; IR (neat) 1739 (C=O), 1565 (N=N); 1 H NMR δ=1.07(t, J=7.0 Hz, CH₃), 2.83 (q, J=7.0 Hz, CH₂), 3.1—3.7 (m, CHCF₃), 4.72 (br s, CH₂N=N); 19 F NMR δ=12.6 (q, J=11.7 Hz), 13.8 (q, J=11.7 Hz).

Decomposition of Pyrazolines 2. 1) Pyrolysis: In a flask equipped with a Dimroth condenser was placed *trans-2* (13.23 g, 31.35 mmol), which was heated at 140 °C. After a reaction, volatile products were evaporated. The resulting products were isolated using a preparative gas chromatograph.

2) Photolysis: Into a quartz ampoule (diameter: 10 mm) was placed trans-2 (13.23 g, 31.35 mmol), which was irradiated at room temperature using a high-pressure mercury lamp (distance: 6—10 cm) under a nitrogen atmosphere. After a reaction was complete, volatile products were evaporated. The resulting products were isolated using a preparative gas chromatograph.

r-1,t-2-Bis(trifluoromethyl)-1-propionylcyclopropane (trans-3): Bp 127 °C; n_0^2 1.3522; d_2^2 1.322; IR (neat) 1735 (C=O); ¹H NMR δ=1.10 (t, J=7.4 Hz, CH₃), 1.4—1.7 (m, CHCF₃), 1.9—2.4 (m, ring CH₂), 2.73 (q, J=7.4 Hz, CH₂); ¹⁹F NMR δ=11.8 (s), 16.3 (d, J=6.0 Hz); MS m/z 234 (M⁺). Found: C, 40.99; H, 3.47%. Calcd for C₈H₈OF₆: C, 41.04; H, 3.44%.

r-1,c-2-Bis(trifluoromethyl)-1-propionylcyclopropane (cis-3): Bp 135 °C; n_0^2 1.3590; d_2^2 1.357; IR (neat) 1723 (C=O); ¹H NMR δ=1.09 (t, J=7.5 Hz, CH₃), 1.3—2.5 (m, CHCF₃), 1.86 (br s, ring CH₂), 2.87 (q, J=7.5 Hz, CH₂); ¹⁹F NMR δ=18.7 (d, J=4.6 Hz), 18.7 (s); MS m/z 234 (M⁺). Found: C, 40.95; H, 3.53%. Calcd for C₈H₈OF₆: C, 41.04; H, 3.44%.

3,4-Bis(trifluoromethyl)-2-ethyl-4,5-dihydrofuran (4): Bp 137 °C; n_0^{20} 1.3628; d_1^{20} 1.338; IR (neat) 1674 (C=C); ¹H NMR δ =1.14 (t, J=7.0 Hz, CH₃), 2.40 (q, J=7.0 Hz, CH₂), 3.5—3.9 (m, CHCF₃), 4.39 (br s, ring CH₂), 4.54 (br s, ring CH₂); ¹⁹F NMR δ =5.1 (dq, J=7.3 and 4.8 Hz), 21.8 (q, J=4.8 Hz). Found: C, 40.52; H, 3.34%. Calcd for C₈H₈OF₆: C, 41.04; H, 3.44%.

4,5-Bis(trifluoromethyl)-1-hexen-3-one (5): Bp 130°C; n_2^{op} 1.3525; IR (neat) 1743 (C=O), 1662 (C=C); 1 H NMR δ =1.10 (t, J=7.2 Hz, CH₃), 2.56 (q, J=7.2 Hz, CH₂), 4.05 (q, J=8.2 Hz, CHCF₃), 6.03 (s, CH), 6.13 (s, CH); 19 F NMR δ =9.0 (s), 12.2 (d, J=8.2 Hz).

References

- 1) R. Fields and R. N. Haszeldine, J. Chem. Soc., 1964, 1881.
- 2) J. M. Birchall, R. Fields, R. N. Haszeldine, and N. T. Kendall, J. Chem. Soc., Perkin Trans. 1, 1973, 1773.
- 3) R. A. Moss, W. Guo, D. Z. Denney, K. N. Houk, and N. G. Rondan, *J. Am. Chem. Soc.*, **103**, 6164 (1981).
- 4) D. Seyferth, G. J. Murphy, and R. A. Woodruff, J. Organomet. Chem., 92, 7 (1975).
- 5) F. Misani, L. Speers, and A. M. Lyon, *J. Am. Chem. Soc.*, **78**, 2801 (1956).
- 6) C. Gröger, H. Musso, and I. Roßnagel, *Chem. Ber.*, **113**, 3621 (1980).
- 7) M. Nishida, Y. Hayakawa, M. Matsui, K. Shibata, and H. Muramatsu, J. Heterocycl. Chem., 28, 225 (1991).
- 8) P. S. Engel, Chem. Rev., 80, 99 (1980).